

Safety Information Bulletin

Operations – ATM/ANS

SIB No.: 2023-03R1

Issued: 22 October 2025

Subject: Incorrect Barometric Altimeter Setting

Revision:

This SIB revises EASA SIB 2023-03 dated 09 March 2023.

Ref. Publications:

- Commission Regulation (EU) 965/2012 of 05 October 2012
- Commission Implementing Regulation (EU) 2017/373 of 01 March 2017
- Commission Implementing Regulation (EU) No 923/2012 of 26 September 2012
- Bureau d'enquêtes et d'analyses pour la sécurité de l'aviation civile (BEA) Final Report BEA2022-0219 dated 11 July 2024

Applicability:

Aircraft operators and Air Navigation Service Providers.

Description:

Serious incidents have highlighted a concern on the effects of incorrect barometric altimeter settings when operating below the transition level. Operating with an incorrect altimeter setting could result in insufficient clearance with terrain and obstacles, or a loss of separation with other traffic, which may potentially lead to CFIT (refer to the acronyms list in Appendix 1 of this SIB) or mid-air collision.

Procedures relying on the use of barometric altimetry have been used for many years and have considerably improved safety by offering vertical guidance to runways, which were previously served with 2D instrument approach procedures or even visual approach procedures.

Incorrect barometric altimeter setting, however, could severely affect the safety margins protecting a variety of approach procedures that are based on the use of barometric altimetry for vertical navigation (e.g. RNP APCH to LNAV/VNAV minima, RNP AR APCH), or that are flown using the CDFA technique that rely on a BARO-VNAV equipment onboard to compute the vertical profile and to provide vertical guidance along the descent (e.g., NDB, VOR, LOC). In addition, it is highlighted that when using barometric altimetry for vertical navigation, altitude/distance cross checks in the Standard Operating Procedures do not detect an incorrect barometric altimeter setting.

Although vertical guidance provided in the Final Approach Segment by ILS, SBAS or GBAS is not directly affected by incorrect barometric settings, barometric setting remains relevant for other

phases of the approach (e.g. initial, intermediate and missed approach segments, and the goaround decision).

Setting the correct barometric values involves several steps that may be subject to errors, including the following: the determination of the local barometric pressure by the meteorological service provider, the broadcasting of the local QNH (or QFE) through ATIS (where available), the radio transmission of the local QNH (or QFE) by Air Traffic Services to the flight crew, and, finally, the altimeter setting by the flight crew from 1013.2 hPa / 29.92 inHg to QNH (or QFE).

Since the publication of the original issue of this SIB, additional incidents have been reported in which incorrect altimeter setting has been identified as a contributory or causal factor. Consequently, this SIB is revised to further clarify the recommendations to ANSPs and aircraft operators.

At this time, the safety concern described in this SIB does not warrant the issuance of a Safety Directive (SD) under Commission Regulation (EU) <u>965/2012</u>, Annex II, ARO.GEN.135 nor under Commission Implementing Regulation (EU) <u>2017/373</u>, Annex II, ATM/ANS.AR.A.025.

Recommendations:

Aircraft operators and ANSPs are reminded of the importance of ensuring that the correct barometric altimeter setting is provided and entered in the aircraft's systems.

To prevent the risk of incorrect barometric setting and mitigate its potential consequences, the following practices are recommended:

To ANSPs:

- Ensure that a directed transmission containing QNH has been provided to each arriving aircraft at least once, and a correct readback has been received.
 - In this regard, assess, and document, whether providing aircraft with a further QNH when cleared for approach, or at first contact with the tower, would be an appropriate mitigation to the referenced risk.
- Implement tools, where available within the existing technology and systems, to utilise the
 downlinked barometric pressure settings from Mode S EHS equipped aircraft to enable timely
 identification of aircraft operating with incorrect altimeter setting.

To aircraft operators:

- Develop procedures to support pilots in checking the consistency of the QNH (or QFE) with previous settings and other available sources (e.g. ATIS).
- Assess the effectiveness of those already implemented procedures, and assess new procedures,
 e.g. pre-select altimeters based on latest information (e.g. ATIS), during the approach briefing.
 When this is not feasible, consider alternative systems to obtain/record QNH information
 during the approach briefing phase.
- Ensure that the latest available software version and the latest terrain and obstacle database are loaded in the TAWS.

• Investigate methods to identify incorrect altimeter setting with the FDM Programme.

In addition, ANSPs and aircraft operators are reminded of the obligations on the use of standard phraseology (ref. Commission Implementing Regulation (EU) No. <u>923/2012</u>) and on reporting of occurrences (ref. Regulation (EU) No. <u>376/2014</u>).

Contact(s):

For further information contact the EASA Safety Information Section, Certification Directorate. E-mail: ADs@easa.europa.eu.

Appendix 1 - Acronyms list

2D instrument approach
Two-dimensional instrument approach operation means an instrument

approach operation using lateral navigation guidance only

ANSP Air Navigation Service Providers

ATIS Automatic Terminal Information Service

BARO-VNAV Barometric Vertical Navigation
CDFA Continuous Descent Final Approach
CELT Controlled Flight Into Torrain

CFIT Controlled Flight Into Terrain

GBAS Ground Based Augmentation System

ILS Instrument Landing System

LNAV Lateral Navigation

LOC Localiser

FDM

LPV Localiser Performance with Vertical Guidance

Flight Data Monitoring

Mode S EHS Mode S Enhanced Surveillance

NDB Non-Directional Beacon

QFE Pressure at airfield elevation

QNH Pressure reduced to mean sea level

RNP APCH Required Navigation Performance Approach

RNP AR APCH Required Navigation Performance "Authorization Required" Approach

SBAS Satellite Based Augmentation System
TAWS Terrain Awareness Warning System

VNAV Vertical Navigation

VOR VHF Omnidirectional Radio Range